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ABSTRACT

A new cloudy boundary layer single-column model is presented. It is designed to be flexible enough to
represent a variety of cloudiness regimes—such as cumulus, stratocumulus, and clear regimes—without the need
for case-specific adjustments. The methodology behind the model is the so-called assumed probability density
function (PDF) method. The parameterization differs from higher-order closure or mass-flux schemes in that it
achieves closure by the use of a relatively sophisticated joint PDF of vertical velocity, temperature, and moisture.
A family of PDFs is chosen that is flexible enough to represent various cloudiness regimes. A double Gaussian
family proposed by previous works is used. Predictive equations for grid box means and a number of higher-
order turbulent moments are advanced in time. These moments are in turn used to select a particular member
from the family of PDFs, for each time step and grid box. Once a PDF member has been selected, the scheme
integrates over the PDF to close higher-order moments, buoyancy terms, and diagnose cloud fraction and liquid
water. Since all the diagnosed moments for a given grid box and time step are derived from the same unique
joint PDF, they are guaranteed to be consistent with one another. A companion paper presents simulations
produced by the single-column model.

1. Introduction

Boundary layer clouds play an important role in the
energy and hydrological cycle of the atmosphere. Slingo
(1990) showed, using a general circulation model, that
small changes in low-level cloud amount or cloud prop-
erties could significantly affect the global radiation bud-
get. Using satellite observations, Hartmann et al. (1992)
demonstrated that low-level clouds, with 60% of the
total cloud radiative forcing, are the largest contributors
to the planetary net cloud forcing. Among low-level
clouds, marine stratocumulus clouds exert a large effect
on the radiative budget. They sharply reduce the net
incoming shortwave radiation owing to their high albedo
compared to the underlying ocean surface, while at the
same time leaving the longwave radiation to space es-
sentially unaffected, owing to their low altitude. Since
sheets of stratocumulus often break up into cumulus
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layers with much lower albedo, it is important to be
able to accurately predict which cloud regime is present.

Because boundary layer clouds have characteristic
sizes that are much smaller than grid boxes used in large-
scale models, such as general circulation models and
mesoscale forecast models, they must be parameterized.
Their incorporation in present-day numerical models
continues to pose a significant challenge. Parameteri-
zations have frequently been developed for specific
cloudiness regimes. With this approach, boundary layer
clouds are first classified into various categories, such
as stratocumulus clouds or shallow cumulus clouds, and
then specific parameterizations are developed for each
regime. The categorization into regimes is, however,
somewhat arbitrary, and leads to the difficult problem
of interfacing the various components to obtain a gen-
eral-purpose parameterization.

One class of parameterization used for boundary layer
clouds includes higher-order turbulence closure models.
As of yet, no single turbulence closure model has suc-
ceeded in modeling both cumulus and stratocumulus
regimes without case-specific adjustments. For instance,
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Bougeault (1981a,b) developed a closure model with
prognostic equations for all the turbulent moments up
to the third order. This higher-order closure scheme was
coupled with a statistical representation of the subgrid-
scale cloudiness. He used the scheme to simulate a trade
wind cumulus layer observed during the Puerto Rico
Experiment. However, in order to model a different re-
gime like a marine stratocumulus layer, Bougeault
(1985) changed the statistical cloudiness scheme and
the representation of the mixing length from the ones
in his original model.

Low-order closure models form another category of
parameterization. They typically only carry a prognostic
equation for the turbulence kinetic energy and close all
other second-order moments diagnostically. These
schemes have been used quite successfully to simulate
stratocumulus layers (e.g., Duynkerke and Driedonks
1987, 1988; Bechtold et al. 1992). However, Bechtold
et al. (1995) showed that the closure assumptions had
to be modified in order to simulate trade wind cumulus
with a low-order model. They found that a statistical
subgrid-scale cloudiness scheme using a Gaussian dis-
tribution was well suited for stratocumulus clouds but
that a positively skewed distribution was necessary to
represent cumulus convection, implying that different
variants of the subgrid-scale cloudiness scheme were
needed for different cloud regimes, similar to the find-
ings of Bougeault (1985).

Mass-flux models represent another type of cloud pa-
rameterization. Following Arakawa and Schubert
(1974), such models simulate subgrid-scale convection
by representing cloud ensembles as one-dimensional
plumes embedded in the environment. Some large-scale
models have incorporated mass-flux parameterizations
for shallow convection, such as for trade wind cumulus
clouds (e.g., Tiedtke 1989; Gregory and Rowntree
1990).

Since mass-flux parameterizations typically only han-
dle convective clouds, models incorporating them in-
clude alternate schemes to account for other boundary
layer cloud regimes. Lock et al. (2000) presented a pa-
rameterization consisting of various schemes coupled
together, including a mass-flux convection scheme for
cumulus layers, a nonlocal eddy viscosity scheme for
mixed layers, and a cloud-top entrainment parameteri-
zation. A total of six possible boundary layer regimes
are identified, and a set of rules based on stability of
the mean profiles and parcel buoyancy is used to activate
the appropriate components of the parameterization at
any given time. Although they found that the parame-
terization was ‘‘capable of switching reasonably
smoothly and realistically between the different re-
gimes,’’ it has not been fully established that a simple
set of rules can trigger the correct scheme under the full
set of conditions.

Lappen and Randall (2001a,b,c) simulated various
cloudiness regimes with a single scheme that unifies
mass-flux and higher-order closure approaches. The

mass-flux approach was used to decompose the bound-
ary layer into updraft and downdraft plumes, and this
decomposition was related in turn to the turbulent mo-
ments as originally proposed by Randall et al. (1992).
The mass-flux decomposition is equivalent to assuming
a double delta function probability density function
(PDF). Lappen and Randall improved upon this distri-
bution by adding subplume variability in the up- and
downdrafts. Their new scheme was applied to simulate
a dry convective boundary layer, a trade wind cumulus
layer, and a stratocumulus-topped layer. The simulation
of the dry convective layer and the stratocumulus case
agreed well with observations, but the trade wind cu-
mulus simulation produced cloud fraction and liquid
water values that were too large compared to the ob-
servations.

In the present paper, we propose a new scheme that
is different from either mass-flux schemes or traditional
higher-order moment schemes. The focus of our scheme
is not the separate prediction of cumulus mass-flux, tur-
bulent moments, cloud cover, and other desired predic-
tands per se. Rather, the focus is the prediction of the
joint PDF of vertical velocity, temperature, and moisture
content. This joint PDF varies in space and evolves in
time. The joint PDF can be viewed as a more funda-
mental quantity than the mass flux, turbulent moments,
and cloud cover, because the latter quantities can be
diagnosed once the joint PDF is known. Explicitly pre-
dicting the shape of the PDF is computationally expen-
sive, so we instead assume a double Gaussian functional
form for the PDF. The problem then reduces to the se-
lection of a particular member from the family of PDFs
for each grid box and time step. This method, frequently
referred to as the ‘‘assumed PDF method,’’ has been
applied in the engineering community to study com-
bustion in fluids (e.g., O’Brien 1980; Frankel et al. 1993;
Bray and Libby 1994; Cook and Riley 1994). In the
atmospheric sciences, PDFs have been used in the past
to parameterize subgrid-scale moisture variations and
thereby account for partial cloud cover (e.g., Sommeria
and Deardorff 1977; Mellor 1977; Bougeault 1981a;
Chen and Cotton 1987).

Our parameterization can be regarded as a traditional
higher-order closure model that uses a new closure
based on a double Gaussian family of PDFs. Alterna-
tively, our parameterization can be regarded as an ex-
tension of Lappen and Randall’s model, in which the
double delta function PDF they used for closure is gen-
eralized to a double Gaussian PDF. The generalization
is inspired by the fact that Larson et al. (2002) evaluated
the performance of several families of joint PDFs and
found that atmospheric PDFs resemble double Gaus-
sians more than double delta functions.

This paper is organized as follows. Section 2 gives
a general overview of the assumed PDF method, its use
for building a boundary layer parameterization, as well
as some of its advantages and disadvantages. In section
3, we describe a new single-column model constructed
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using the assumed PDF method. We summarize the
choice of the family of PDFs and the predictive moment
equations. Details of the numerical implementation are
also presented. We finish with some concluding remarks.
Results obtained with the parameterization for a variety
of boundary layer regimes are presented in a comparison
paper (Golaz et al. 2002, hereafter Part II).

2. The assumed PDF method

a. General description

We denote the joint PDF of vertical velocity w, liquid
water potential temperature ul, and total specific water
content qt by P(w, ul, qt). If P(w, ul, qt) is a joint PDF,
then P(w, ul, qt) dw dul dqt is the probability of obtaining
a value of (w, ul, qt) within the range (w 2 dw/2) , w
, (w 1 dw/2),(ul 2 dul/2) , ul , (ul 1 dul/2), and
(qt 2 dqt/2) , qt , (qt 1 dqt/2) at a specific location
and time. For the purpose of this work, we are interested
in the joint PDF associated with a particular model grid
box and time step. The joint PDF then becomes a char-
acterization of the unresolved subgrid variations that
occur within this particular box. However, the PDF does
not provide any information about the spatial organi-
zation of this variability within the box of interest.

Because directly predicting the full subgrid-scale joint
PDF is computationally too expensive, the assumed PDF
method requires the PDFs to lie within a preselected
family of PDFs, such as the multivariate Gaussian. Al-
though this family of PDFs is not recommended for
large-scale grid boxes (Larson et al. 2002), it serves as
a familiar example. The Gaussian shape defines a family
of joint vertical velocity, temperature and moisture
PDFs whose positions, widths, and correlations vary.
This particular family depends on nine PDF parameters:
three for the positions of the Gaussian along the three
dimensions w, ul, qt; three for their respective widths;
and three for the correlations between the dimensions.
Within this family of PDFs, one needs to select a par-
ticular member—identified by its values of the nine PDF
parameters—for each grid box and time step.

How can we determine the PDF parameters? To do
so, we use the numerical model to predict moments in
each grid box and require the PDF’s moments to match
the predicted moments. For our example of the multi-
variate Gaussian distribution, a logical choice of mo-
ments to predict would be the means , l, t, thew u q
variances , , and the correlations , ,2 2 2w9 u9 q9 w9u9 w9q9l t l t

. For this simple example, these moments also hap-u9q9l t

pen to be the nine PDF parameters characterizing the
PDF family. This is generally not the case, however,
and a mapping must then be constructed between the
grid box moments and the PDF parameters. Examples
of such mappings are described in Larson et al. (2001a,
2002). To predict the needed moments, the assumed
PDF method requires that the model include additional
prognostic equations for the desired higher-order mo-

ments. Mean quantities are typically predicted by at-
mospheric models. The number of additional equations
depends upon the complexity of the chosen family of
PDFs, that is, the number of PDF parameters required
to characterize the family.

The prognostic moments equations needed are the
standard higher-order moment equations based on the
Navier–Stokes and advection–diffusion equations (e.g.,
Stull 1988). These equations contain unclosed higher-
order and buoyancy terms. In many models, the higher-
order terms are closed by assuming that the quantity of
interest diffuses down the gradient of that quantity (e.g.,
Donaldson 1973; Wyngaard et al. 1974; Lumley and
Khajeh-Nouri 1974). This assumption is often poor
(Moeng and Wyngaard 1989). The quasi-normal as-
sumption, which expresses the fourth-order correlations
in term of the second-order moments assuming Gaus-
sianity, has also been used in numerous third-order clo-
sure models (e.g., André et al. 1976a,b). However, the
quasi-normal assumption does not require the third-or-
der moments to vanish, as would be required for strict
consistency with the Gaussian PDF. The assumptions
used to close buoyancy terms are typically inconsistent
with the closure of the higher-order moments. For ex-
ample, Bougeault (1981b) used the quasi-normal as-
sumption to close the fourth-order moments and used a
positively skewed PDF to close the buoyancy terms.
Cumulus layers typically have positive skewness values,
which is inconsistent with the zero skewness assumption
of the quasi-normal closure. One of the advantages of
the assumed PDF method is that once the joint PDF of
w, ul, and qt is known, then any moments or correlations
involving these variables can be computed by integra-
tion over the PDF. In particular, the unclosed terms that
involve only these variables can be computed from the
PDF without any additional assumptions. For example,
any correlation of the form —where l, m, n arel m nw9 u9 q9l t

positive integers–can be computed as follows:

l m nw9 u9 q9l t

l m n5 (w 2 w) (u 2 u ) (q 2 q )EEE l l t t

3 P(w, u , q )dw du dq . (1)l t l t

Cloud fraction and cloud water can be diagnosed di-
rectly by integrating over the saturated portion of the
PDF. Buoyancy-related moments (involving the virtual
potential temperature ) can also be computed directlyu9y
from the joint PDF and depend on the particular choice
of the family of PDFs. For example, Sommeria and
Deardorff (1977) and Mellor (1977) proposed formulas
for a Gaussian distribution. Using a double delta PDF,
Randall (1987) derived an expression for the buoyancy
flux that significantly differed from the expressions
based on a Gaussian distribution. The higher-order mo-
ment equations also contain pressure terms involving
correlations between pressure and scalar perturbations.
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Because pressure is not included in the PDF, these terms
are closed using standard parameterizations (see below).

b. Advantages

The assumed PDF method has some advantages that,
in principle, may help address several difficulties con-
fronting parameterizations of boundary layer clouds.

1) Consistency. In some schemes, cloud fraction and
cloud water content are predicted separately from
each other; in other schemes, different closure meth-
ods are used for higher-order moments and buoyancy
terms (e.g., Bougeault 1981b). When this is the case,
there is no guarantee of consistency among the var-
ious components forming a parameterization. With
the PDF method, in contrast, the prediction of cloud
fraction, cloud water, higher-order moments, and
buoyancy terms are guaranteed to be internally con-
sistent, since all of them are derived from the same
PDF (Lappen and Randall 2001a).

2) Flexibility. A PDF parameterization is somewhat
modular, with the prognostic equations separated to
some degree from the choice of the PDF family.
Therefore, the family of PDFs can be changed with-
out having to entirely rewrite a parameterization.
This makes the assumed PDF method rather flexible.
However, changing the PDF involves rewriting the
mapping between the moments and the PDF param-
eters, and also involves modifying the diagnosis of
higher-order moments, buoyancy terms, cloud frac-
tion, and liquid water. If the number of PDF param-
eters changes from one family of PDFs to another,
one also has to add or remove prognostic equations.

3) Testable empiricism. The moment equations derived
from the Navier–Stokes and advection–diffusion
equations are closed using a family of PDFs. This
PDF family can be tested and validated against ob-
servations. For instance, Larson et al. (2001a, 2002)
have tested numerous families of PDFs against air-
craft data and large eddy simulations for a variety
of boundary layer cloudiness regimes.

4) Avoiding biases. In other types of closure, even when
cloud fraction is taken into account, systematic bi-
ases in cloud and radiative properties remain, due to
the neglect of subgrid-scale variability (Cahalan et
al. 1994; Rotstayn 2000; Pincus and Klein 2000;
Larson et al. 2001b). For instance, the autoconver-
sion process by which cloud droplets grow to drizzle-
sized drops is frequently represented using the Kes-
sler autoconversion parameterization (Kessler 1969).
If one uses this parameterization and neglects sub-
grid variability within a grid box, one systematically
underpredicts autoconversion in the grid box relative
to what one would obtain if subgrid variability were
taken into account. But the PDF approximates the
subgrid information needed to remove such a bias.

5) Avoiding trigger functions. Some parameterization

packages contain separate schemes for separate re-
gimes and use trigger functions to activate the correct
scheme. For example, Lock et al. (2000) use a mixed-
layer scheme for stratocumulus and a separate mass-
flux scheme for cumulus. The algorithm then decides
which scheme to activate via a set of rules: the trigger
function. It is difficult to formulate a sufficiently
general trigger function to use under a wide range
of conditions. For instance, the transition from stra-
tocumulus to cumulus depends on many factors, in-
cluding surface latent heat fluxes, surface shear, and
drizzle rate (Lenschow 1998). Furthermore, the use
of a trigger function introduces an artificially sharp
transition between meteorological regimes. How-
ever, if one uses the assumed PDF method and choos-
es a sufficiently general family of PDFs, then one
can avoid the use of trigger functions. A single
scheme can then be applied to all regimes and can
simulate a smooth transition from one regime to an-
other.

c. Disadvantages

The disadvantages of the assumed PDF method are
mostly related to the computational cost of implement-
ing a PDF-based parameterization. The computational
cost falls into four categories.

1) Additional prognostic equations. In the assumed
PDF method, the number of prognostic moments
must equal the number of free parameters in the
chosen family of PDFs. The PDF used for this work
needs seven moment equations in addition to the
mean equations already prognosed by the host model
(see next section). The scheme is therefore compu-
tationally more expensive than simpler turbulence
kinetic-energy-based schemes used in many models.
The added cost is comparable to second-order clo-
sure models, but it is considerably less than full third-
order models.

2) Time step. The addition of prognostic equations for
the higher-order moments acts to limit the allowable
time step. Typically, time steps of a few seconds have
been used in higher-order closure models (e.g., Bou-
geault 1981b). Through the use of a nested time-
stepping scheme presented in section 3c, we were
able to increase the main time step to approximately
20 s. This becomes comparable to typical time in-
crements in mesoscale models but is still well below
increments used in general circulation models.

3) Vertical grid spacing. Because the model must ex-
plicitly resolve boundary layer features such as in-
versions, a relatively fine vertical grid spacing is
needed. This limitation is, however, not particular to
the assumed PDF method, but applies to many other
closure models as well.

4) Momentum fluxes. The joint PDF family does not
include perturbations involving horizontal winds u9
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and y9, and as a result the momentum fluxes are
currently closed using a traditional downgradient dif-
fusion approach. However, generalizing the PDF to
include horizontal winds would add complexity
(Lappen and Randall 2001a).

3. Model description
a. Basic equations

This section describes the new boundary layer single-
column model, which is based on the assumed PDF

method. The PDF family retained for this work is the
analytic double Gaussian 1 PDF suggested in Larson et
al. (2002). It is a double Gaussian with correlation be-
tween ul and qt within each individual Gaussian:

P(w, u , q ) 5 aG (w, u , q )l t 1 l t

1 (1 2 a)G (w, u , q ), (2a)2 l t

with

21 1 w 2 (w 2 w)iG(w, u , q ) 5 3 exp 2l t 3/2 2 1/2 1 2[ ](2p) s s s (1 2 r ) 2 swi q u q u witi ti t l

2 21 q 2 (q 2 q ) u 2 (u 2 u )t ti t l li l3 exp 2 1
27 5[ ] [ ]2(1 2 r ) s sq u q ut l ti li

q 2 (q 2 q ) u 2 (u 2 u )t ti t l li l2 2r . (2b)q ut l 68[ ][ ]s sq uti li

This family of PDFs depends on a number of free pa-
rameters:

• a is the relative weight of the first Gaussian;
• c1, c2, s , and s are locations and widths of thec c1 2

vertical velocity (w), liquid water potential tempera-
ture (ul), and total specific water content (qt) Gaus-
sians;

• r is the intra-Gaussian correlation between liquidq ut l

water potential temperature and total specific water
content.

Some examples of double Gaussian PDFs projected
on the vertical velocity axis are depicted in Fig. 1. They
demonstrate some of the flexibility of the family of
PDFs. It can represent symmetric distributions (Figs. 1a
and 1b) that could, for instance, occur in stratocumulus
layers, but it can also represent skewed distributions.
Figure 1f, with its long tail extending on the positive
side of the vertical velocity axis, is typical of what might
be encountered in a cumulus layer. Although the analytic
double Gaussian 1 family cannot reduce to a single
Gaussian in w, it does reduce to a single Gaussian in
ul and qt when the corresponding fluxes vanish [Eqs.
(6) and (7) below].

The PDF parameters used to characterize a particular
member from the family of PDFs are obtained analyt-
ically from 10 moments. They are the means of vertical
velocity , liquid water potential temperature l, andw u
total water specific humidity t; the second-order mo-q
ments , , , , , ; and the third-2 2 2w9u9 w9q9 q9u9 w9 u9 q9l t t l l t

order moment of the vertical velocity . Because the3w9
number PDF parameters (15) is larger than the number

of prognostic moments (10), additional assumptions are
needed. Complete details are given in Larson et al.
(2002). We only briefly outline the methodology to ob-
tain the PDF parameters here. The vertical velocity mo-
ments , , and are used to compute the PDF2 3w w9 w9
parameters a, w1, w2, sw1, and sw2. The width of each
Gaussian along the w coordinate is defined as sw1 5
sw2 5 w . We choose w 5 0.4. The relative2s̃ Ïw9 s̃
weight of each Gaussian a, as well as its locations w1

and w2 are obtained by integrating the PDF to obtain
expressions for , , and . We define the skewness2 3w w9 w9
Skw [ /(

3/2
) and find3 2w9 w9

1/21 1
a 5 1 2 Sk , (3)w 2 3 25 6[ ]2 4(1 2 s̃ ) 1 Skw w

1/2w 2 w 1 2 a1 2 1/2w̃ [ 5 (1 2 s̃ ) , (4)1 w1 22 aÏw9

1/2w 2 w a2 2 1/2w̃ [ 5 2 (1 2 s̃ ) . (5)2 w1 22 1 2 aÏw9

The parameters l1 and l2 are obtained from the equa-u u
tions for l and :u w9u9l

2 2Ï Ïw9u9/( w9 u9 )u 2 u l ll1 lũ [ 5 2 , (6)l1
2 w̃Ïu9 2l

2 2Ï Ïw9u9/( w9 u9 )u 2 u l ll2 lũ [ 5 2 . (7)l2
2 w̃Ïu9 1l
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FIG. 1. Examples of double Gaussian PDFs projected to the vertical
velocity axis with differing variances and skewnesses. Two variance
values ( 5 0.3, 1 m2 s22) and three skewness values (Skw 52w9

/
1.5

5 0, 0.5, 1.5) are shown.3 2w9 w9

Unlike the widths of the Gaussians along the w axis,
the widths along the ul axis, s and s , are allowedu 1 u 2l l

to differ. They are computed from the equations for
and . Since is not a prognostic variable, an2 3 3u9 u9 u9l l l

additional assumption regarding the skewness of ul is
needed. We simply assume that it is zero. The procedure
to obtain the parameters qt1, qt2, s , and s is similar.q 1 q 2t t

The skewness of qt is assumed to be proportional to
Skw with a proportionality coefficient of 1.2. We realize
that the skewness assumptions made here are not very
realistic. Larson et al. (2002) also tested another, more
costly, double Gaussian family of PDFs based on Lew-
ellen and Yoh (1993). It does not make such assumptions
and was found to perform slightly better than the PDF
used here. However, the potential gains come at the price
of additional cost and complexity of predicting the third
moments of qt and ul. Finally, the subplume correlation
r is obtained from the equation. Note also thatq9u9q u t lt l

special cases arise when any of the predicted second-
or third-order moments are vanishingly small. The pro-
cedure in these cases is detailed in Larson et al. (2002).

We now introduce the prognostic equations governing
the time evolution of the 10 moments required by the
parameterization. Since the parameterization is imple-
mented in a single-column framework, the mean vertical
velocity is imposed and does not need to be explicitly
prognosed. However, the single-column model does
prognose the mean horizontal winds and . To deriveu y

the predictive equations, we use the filtering approach,
in which the model-resolved fields are regarded as a
running spatial average of finite width (Germano 1992).
As a notational shorthand, we will write , but thisa9b9
is meant to be interpreted as 2 , and similarlyab ab
for other moments. The probability distribution asso-
ciated with the filtering approach is the probability of
finding w, ul, and qt within a spatially filtered region.
The PDFs referred to in this paper are therefore, strictly
speaking, ‘‘filtered density functions,’’ as discussed in
Colucci et al. (1998).

The filtered equations describing the time evolution
of the grid box mean values are

]u ]u ]
5 2w 2 f (y 2 y ) 2 u9w9, (8)g]t ]z ]z

]y ]y ]
5 2w 1 f (u 2 u) 2 y9w9, (9)g]t ]z ]z

]q ]q ] ]qt t t5 2w 2 w9q9 1 , and (10)t )]t ]z ]z ]t ls

]u ]u ] ]ul l l5 2w 2 w9u9 1 R 1 . (11)l )]t ]z ]z ]t ls

Here is the radiative heating rate; f the Coriolis pa-R
rameter; ug, y g the geostrophic winds; and (] t/]t) | lsq
and (] l/]t) | ls are large-scale moisture and temperatureu
forcings. The momentum fluxes and are di-u9w9 y9w9
agnosed as described later in the text.

The time evolution of the second-order turbulent mo-
ments is given by equations similar to André et al.
(1978), with the following differences: (i) the mean ver-
tical advection terms have been retained for all mo-
ments, (ii) the conservative liquid water potential tem-
perature (ul) is used as prognostic temperature variable,
with the buoyancy related moments written in terms of
virtual potential temperature (Bougeault 1981b):

2 2 3]w9 ]w9 ]w9 ]w 2g
25 2w 2 2 2w9 1 w9u9y]t ]z ]z ]z u0

2 ]p9
2 w9 2 e , (12)wwr ]z0

2 2 2]q9 ]q9 ]w9q9 ]qt t t t5 2w 2 2 2w9q9 2 e , (13)t q qt t]t ]z ]z ]z

2 2 2]u9 ]u9 ]w9u9 ]ul l l l5 2w 2 2 2w9u9 2 e , (14)l u ul l]t ]z ]z ]z

]q9u9 ]q9u9 ]w9q9u9 ]ut l t l t l l5 2w 2 2 w9q9t]t ]z ]z ]z

]qt2 w9u9 2 e , (15)l q ut l]z
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2]w9q9 ]w9q9 ]w9 q9 ]qt t t t25 2w 2 2 w9
]t ]z ]z ]z

]w g 1 ]p9
2 w9q9 1 q9u9 2 q9 2 e , (16)t t y t wqt]z u r ]z0 0

2]w9u9 ]w9u9 ]w9 u9 ]ul l l l25 2w 2 2 w9
]t ]z ]z ]z

]w g 1 ]p9
2 w9u9 1 u9u9 2 u9 2 e , (17)l l y l wul]z u r ]z0 0

with g the gravity, r0 and u0 the reference density and
potential temperature, and ecc the dissipation terms.

The prognostic equation for the third-order moment
of the vertical velocity ( ) differs slightly from the3w9
one in André et al. (1978) because the quasi-normal
approximation has not been used and therefore the
fourth-order moment of the vertical velocity ( ) is left4w9
unclosed:

3 3 4 2]w9 ]w9 ]w9 ]w9 ]w
2 35 2w 2 1 3w9 2 2w9

]t ]z ]z ]z ]z

3g 3 ]p9
2 21 w9 u9 2 w9 2 e . (18)y wwwu r ]z0 0

Equations (12), (16), and (17) contain pressure cor-
relation terms that must be parameterized. We follow
André et al. (1978) who used a formulation based on
Rotta (1951) and Launder (1975):

2 ]p9 C 24 22 w9 5 2 w9 2 e1 2r ]z t 30 1

]w 2g
22 C 22w9 1 w9u95 y1 2]z u0

2 g ]u ]y
1 C w9u9 2 u9w9 2 y9w9 ,5 y1 23 u ]z ]z0

(19)

1 ]p9 C ]w g62 q9 5 2 w9q9 2 C 2w9q9 1 q9 u9 ,t w 7 w w y1 2r ]z t ]z u0 2 0

(20)

1 ]p9 C ]w g62 u9 5 2 w9u9 2 C 2w9u9 1 u9u9 ,l l 7 l l y1 2r ]z t ]z u0 2 0

(21)

where t1 and t2 are dissipation timescales described
below. The damping constants Ci are also given later
in the text.

Because the model does not predict any higher-order
moments of the horizontal winds, we assume that the
turbulence kinetic energy is proportional to the verticale
velocity variance :2w9

3
2e 5 w9 . (22)

2

With a proportionality coefficient of 3/2, the first term
on the right-hand side of (19) effectively drops out. The
model results exhibited only moderate sensitivity when
various values for the proportionality constant were test-
ed. The same constant was used for all test cases pre-
sented in Part II. However, Eq. (22) would not be ap-
propriate for cases where production of turbulence by
shear is important.

For the pressure correlation term in Eq. (18), Bou-
geault (1981b) suggested the addition of a ‘‘rapid’’ term
to the formulations used by André et al. (1978):

3 ]p9 C82 32 w9 5 2 w9
r ]z t0 www

]w 3g
3 22 C 22w9 1 w9 u9 . (23)11 y1 2]z u0

The dissipation parameterizations for the second-or-
der moments are expressed as

C1 2 2 2e 5 w9 2 n ¹ w9 ; (24a)ww 1 zt 1

C C2 22 2 2 2 2 2e 5 q9 2 n ¹ q9 , e 5 u9 2 n ¹ u9 ,q q t 2 z t u u l 2 z lt t l lt t1 1

C2 2e 5 q9u9 2n ¹ q9u9; (24b)q u t l 2 z t lt l t 1

2 2e 5 2n ¹ w9q9, e 5 2n ¹ w9u9; (24c)wq 6 z t wu 6 z lt l

where denotes the second-order vertical derivative.2¹z

The dissipation parameterizations, with the exception of
the turbulent fluxes, are composed of two terms: a New-
tonian damping term that is inversely proportional to a
characteristic dissipation timescale t1, and a background
diffusion term. The diffusion term was found to be a
needed complement since the Newtonian damping term
cannot damp small-scale noise. The diffusion term is
typically much smaller than all the other terms in the
prognostic equation. The dissipation for the fluxes only
incorporates a background diffusion term; a damping
term is part of the parameterization of the pressure cor-
relation. The timescales t i are taken as the ratio of an
eddy length scale Li (see section 3b, below), and a char-
acteristic velocity scale :Ïe

 L Li i; # tmaxÏe Ïe
t 5 i 5 1, 2. (25)i

Lit ; . t max maxÏe

A maximum dissipation time tmax of 900 s is imposed
in order to prevent the damping terms from becoming
too small in regions with little turbulent activity.

When the PDF parameter a defining the relative



15 DECEMBER 2002 3547G O L A Z E T A L .

weight of each Gaussian is very close to either 0 or 1,
instabilities can develop due to large values of the higher-
order moments and diagnosed by the closure.2 4w9 u9 w9y

It was found that this problem can be overcome by
decreasing the dissipation timescale twww appearing in
Eq. (23) relative to the general timescale t1 when a is
close to 0 and 1:

21
a 2 0.01

t 1 1 3 1 2 ;1 1 2[ ]0.04

0.01 # a , 0.05
t 5 t ; 0.05 # a # 0.95www 1 (26)

21
0.99 2 a

t 1 1 3 1 2 ;1 1 2[ ]0.04
0.95 , a # 0.99.

This modification effectively decreases the dissipation
timescale in the predictive equation for by up to a3w9
factor of four when a is close to either 0 or 1. The PDF
closure enforces that a must lie in the range of 0.01 to
0.99 (Larson et al. 2002).

Finally, the dissipation parameterization for the third-
order moment of the vertical velocity is of the form3w9

2 3e 5 2(K 1 n )¹ w9 . (27)www w 8 z

Compared to the dissipation for the second-order mo-
ments [Eq. (24)], a larger diffusion coefficient was
found to be necessary to maintain stability of the model.
The eddy diffusivity coefficient Kw is

1/2K 5 0.22L e .w 1 (28)

The constant appearing in Eq. (28) is comparable to the
one used by Moeng and Randall (1984) to damp oscil-
lations appearing near the boundary layer inversion.

The traditional closure problem is regarded as closing
the higher-order terms appearing in the predictive mo-
ment equations. For the set of equations (12)–(18), they
are , , , , , and . Ad-2 2 2 2 4w9q9 w9u9 w9q9u9 w9 q9 w9 u9 w9t l t l t l

ditionally, buoyancy terms ( , , , )2w9u9 q9u9 u9u9 w9 u9y t y l y y

must also be related to prognostic quantities. This has
frequently been regarded as distinct from the closure
problem. However, the assumed PDF method allows us
to close all those terms in a consistent manner directly
from the PDF.

The higher-order moments that need to be closed are
computed by integration over the PDF as in Eq. (1). For
the analytic double Gaussian 1 PDF family, we obtain
after integration

2 2 2w9u9 5 a(w 2 w)[(u 2 u ) 1 s ]l 1 l1 l ul1

2 21 (1 2 a)(w 2 w)[(u 2 u ) 1 s ], (29)2 l2 l ul2

2 2 2w9 u9 5 a[(w 2 w) 1 s ](u 2 u )l 1 w1 l1 l

2 21 (1 2 a)[(w 2 w) 1 s ](u 2 u ), (30)2 w2 l2 l

w9q9u9 5 a(w 2 w)t l 1

3 [(q 2 q )(u 2 u ) 1 r s s ]t1 t l1 l q u u qt l l1 t1

1 (1 2 a)(w 2 w)2

3 [(q 2 q )(u 2 u ) 1 r s s ], (31)t2 t l2 l q u u qt l l2 t2

and
4 4 2 2 4w9 5 a[(w 2 w) 1 6(w 2 w) s 1 3s ]1 1 w1 w1

41 (1 2 a)[(w 2 w)2

2 2 41 6(w 2 w) s 1 3s ]. (32)2 w2 w2

Expressions for and are similar to Eqs. (29)2 2w9q9 w9 q9t t

and (30), respectively. In order to compute the buoyancy
terms ( , , , ), we first rewrite them2w9u9 q9u9 u9u9 w9 u9y t y l y y

as (Bougeault 1981b)

1 2 e0x9u9 5 x9u9 1 u x9q9y l 0 te0

R /cd pL p 1y 01 2 u x9q9, (33)0 l1 2[ ]c p ep 0

where x9 represents w9, , , or w92. Here, e0 5 Rd/q9 u9t l

Ry , Rd is the gas constant of dry air, Ry is the gas constant
of water vapor, Ly is the latent heat of vaporization, cp

is the heat capacity of air, and p0 is a reference pressure.
The correlations involving liquid water ( ) can bex9q9l
computed for a given family of PDFs (Larson et al.
2002).

As currently formulated, the PDF family does not
include the horizontal winds u and y as independent
variables. Therefore, we use a traditional downgradient
approach to close the momentum fluxes appearing in
Eqs. (8) and (9):

]u
u9w9 5 2K , (34a)m ]z

]y
y9w9 5 2K , (34b)m ]z

where the turbulent transfer coefficient Km is given by
1/2K 5 c L e ,m K 1 (35)

with cK 5 0.548 as in Duynkerke and Driedonks (1987).
The specific values of the constants Ci and ni are as

follows: C1 5 1.7, C2 5 1.04, C4 5 4.5, C5 5 0, C6

5 4.85, C7 5 0.8, C8 5 2.73, C11 5 0.2, n1 5 n2 5
n8 5 20 m2 s21, and n6 5 30 m2 s21. Compared to the
values suggested by Bougeault (1981b), C4, C5, C6 are
identical; C2, which controls the damping terms on the
variances, was reduced by 20% to bring the variances
in cumulus layers more in line with large eddy simu-
lation (LES) results; C7 was also adjusted to improve
the magnitude of the turbulent fluxes as compared to
the LES; C8 was reduced; and C11 was set to the value
suggested by André et al. (1982). Bougeault (1981b)
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selected the constants C8 and C11 to artificially reduce
the magnitudes of the third-order moments as compared
to the LES, because he found ‘‘that large values of the
third-order moments lead almost systematically to in-
stability.’’ He speculated that ‘‘a possible lack of con-
sistency between the quasi-Gaussian assumption and the
non-Gaussian cloud parameterization may be respon-
sible for this instability.’’ Although the assumed PDF
method does not get rid of all sources of instability, it
avoids this particular inconsistency, and we found it
necessary to adjust the values of C8 and C11 to obtain
realistic values of .3w9

b. Eddy length formulation

To compute the dissipation timescale t or the eddy
diffusivity coefficients Kw and Km, we need to calculate
eddy length scales L1 and L2. To do so, we adopt the
method of Bougeault and André (1986) and Bechtold
et al. (1992). They construct L from an upward free path
Lup(z) and a downward free path Ldown(z). They let Lup(z)
. 0 be the distance that a parcel at altitude z can be
carried upwards by buoyancy until it overshoots and
exhausts its initial kinetic energy. The initial kinetic
energy is approximated as the turbulence kinetic energy

(z) [Eq. (22)]. Therefore,e
z1Lup g

2 [u (z) 2 u (z9)] dz9 5 e(z). (36)E y yu (z9)yz

Similarly, Ldown(z) . 0 is the distance that a parcel can
travel downwards under the influence of buoyancy:

z g
[u (z) 2 u (z9)] dz9 5 e(z). (37)E y yu (z9)yz2Ldown

Then L must be written as some average of Lup and
Ldown. We choose the same average as Bougeault and
Lacarrère (1989):

L 5 ÏL L . (38)up down

When L is large, turbulence is weakly damped; when L
is small, turbulence is strongly damped. Equation (38)
ensures that L tends to become small if either Lup or
Ldown becomes small.

We modify these formulas to make them more ap-
propriate for cumulus layers. The formulas for Lup and
Ldown assume that a parcel is lifted without condensation
or dilution. In a cumulus layer, however, this leads to
unrealistically low values of Lup. To increase the upward
free path, we assume that the parcel is moist and en-
training. That is, we replace (36) with

z1Lup g
2 [u (z9) 2 u (z9)] dz9 5 e(z), (39)E y ,parcel yu (z9)yz

where uy ,parcel is the virtual potential temperature of a
parcel that starts its ascent with the mean value of uy

at altitude z and entrains with fractional entrainment rate
m 5 (1/M)dM/dz. Here, M is the mass of the parcel,

and we choose m 5 6 3 1024 m21. The calculation of
uy ,parcel assumes that condensation occurs when the par-
cel exceeds saturation. Lappen and Randall (2001b) also
include condensation effects in L.

Despite this modification, our experience is that Eq.
(39) still appears to underestimate Lup in cumulus layers.
This is probably because Eq. (39) represents a ‘‘local’’
length scale, whereas for cumulus layers in particular a
‘‘nonlocal’’ length scale may be more appropriate. By
a local length scale, we mean that Eq. (39) assumes that
Lup(z) is determined by lifting a parcel with the mean
value of uy at the local altitude z. In some cases, parcels
initiated in the cumulus layer with uy 5 (z) may as-uy

cend little if at all, whereas parcels initiated at the
ground with uy 5 (0) may reach a much higher al-uy

titude than z. This reflects the difficulty of defining a
general estimate of L. In these cases, it seems reasonable
to base the length scale at z on the displacement of
parcels lifted from lower levels. Therefore, we use the
following procedure to make the length scale nonlocal.
After computing Lup(z), we find the highest altitude amax

5 z0 1 Lup(z0) attained by all parcels lifted from lower
altitudes z0 , z. If amax exceeds the altitude attained by
the parcel started at z—that is, if amax . z 1 Lup(z)—
then we set Lup(z) 5 amax 2 z. Then Lup equals the highest
distance above z reached by parcels ascending through
z from below. We follow an analogous procedure to
nonlocalize Ldown. We can calculate nonlocal versions
of Lup and Ldown without adding loops in the computer
code beyond those needed to calculate the local Lup and
Ldown.

Finally, we limit the values of L as follows. Following
Bechtold et al. (1992), we set a lower limit Lmin on Lup

and Ldown. We choose Lmin 5 20 m so that it is smaller
than the vertical grid spacing. Also, instability can de-
velop if L is too large. Therefore, we set upper limits
on L1 and L2:

L 5 min(L, 400 m), and (40)1

L 5 min(L, 2000 m). (41)2

We have found that using different maximum values for
L1 and L2 mitigates numerical instability. The same max-
imum length scales are used in all simulations. It might,
however, be more judicious to let the maximum values
scale with the boundary layer depth.

c. Numerical discretization

Equations (8)–(18) are discretized on a vertically
staggered grid as shown in Fig. 2. First- and third-order
moments are located at grid box centers (zt levels),
whereas second-order and fourth-order moments reside
on grid box edges (zm levels). The staggering simplifies
the spatial discretization of the prognostic equations;
turbulent advection terms, such as ] /]z and ] /]z3 4w9 w9
appearing in the predictive equations for and ,2 3w9 w9
can be computed directly with a centered-in-space dif-
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FIG. 2. Model grid setup. The surface is located at the zm(1) level.
First- and third-order moments reside on zt levels, and second- and
fourth-order moments on zm levels.

FIG. 3. Schematic representation of the model time step. Numbers
in parentheses refer to the equations in the text, Dt is the main time
step, and n the time-stepping ratio for the nested time step.

ference without any interpolation. The production terms
( ] t/]z, . . .) in the second-order moment equations2w9 q
can also be discretized without interpolation. Advection
by the mean flow terms ( ] /]z, . . .) require inter-2w w9
polation from the zm levels to the zt levels or vice versa,
which is done using a linear scheme. The PDF closure
algorithm is applied at the grid box centers (zt levels);
the second-order moments are thus interpolated to the
zt levels on input to the PDF closure and the fourth-
order moment of the vertical velocity ( ) is interpo-4w9
lated back to the zm levels after output from the PDF
closure.

The time discretization uses a nested time step. A
short time increment is used to integrate the equations
involving the higher-order vertical velocity moments
[Eqs. (12) and (18)], while all the other moment equa-
tions are integrated on the regular time step. This makes
it possible to significantly increase the main model time
step without causing instability. The time-stepping
method is explicit, forward in time, for all terms except
for the dissipation terms, which are treated implicitly.
The horizontal momentum fluxes are also computed im-
plicitly.

Because of the staggered grid configuration, we only
need to impose surface boundary conditions for the sec-
ond- and fourth-order moments. The turbulent fluxes of
momentum ( , ), heat ( ), and moistureu9w9 y9w9 w9u9l
( ) can either be imposed or computed using a bulkw9q9t
aerodynamic formula. The surface values of the vari-
ances ( , , ) are computed as in André et al.2 2 2w9 u9 q9l t

(1978). The PDF closure scheme is also called at the
surface to obtain a boundary condition for and the4w9
second-order buoyancy moments. As input, it uses sur-
face values for the second-order moments and inter-
polated values from the first level above ground for the
means and third-order moments. At the upper boundary,
all turbulent moments are set to zero since this level is

located high enough above the top of the atmospheric
boundary layer.

Finally, Fig. 3 gives a visual summary of the various
steps involved within each model time step. The model
starts by computing large-scale forcings such as advec-
tive and radiative tendencies. Equations for the means,
as well as equations for the second-order moments with
the exception of the vertical velocity variance, are then
advanced by one time increment. The eddy length scale
is then updated using the new mean profiles. The nested
time step follows; it updates the dissipation time and
diffusivity coefficients, advances the predictive equa-
tions for and , imposes boundary conditions and2 3w9 w9
calls the PDF closure scheme to close all higher-order
and buoyancy terms. The nested time step procedure is
typically repeated between five and seven times within
each main model time step.

4. Conclusions

A new cloudy boundary layer single-column model
is described that utilizes a joint PDF for representing
the subgrid-scale variability of vertical velocity, tem-
perature, and moisture content. The PDF representation
is incorporated into a higher-order turbulence closure
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scheme and is used to close all higher-order and buoy-
ancy terms, as well as to diagnose cloud fraction and
liquid water, all in a manner consistent with the PDF.
For each grid point and time step, a particular PDF is
selected from an underlying family of PDFs, therefore
allowing the PDF to vary in space and evolve in time.

The family of PDFs used in this work is the analytic
double Gaussian 1 proposed by Larson et al. (2002). It
is based on aircraft observations and LES model outputs
of various types of boundary layer clouds, including
shallow cumulus and stratocumulus clouds. This family
of PDFs depends on 10 free parameters. The values of
these parameters are determined from the grid box mean
values of the vertical velocity ( ), liquid water potentialw
temperature ( l), total water specific humidity ( t), theu q
six second-order moments ( , , , , ,2 2w9u9 w9q9 q9u9 w9 u9l t t l l

), and the third-order moment of the vertical velocity2q9t
( ). Filtered Navier–Stokes prognostic equations are3w9
integrated to yield the time evolution of these moments.
The assumed PDF method can be summarized in three
major steps that need to be carried out for each model
time step and at each grid box:

1) predict mean quantities and higher-order turbulent
moments;

2) use the predicted moments to select a particular PDF
member from the family of PDFs;

3) use the particular PDF selected to close higher-order
moments and diagnose the buoyancy terms, cloud
fraction, and cloud water.

This is detailed in Fig. 3. In Part II (Golaz et al. 2002),
we present results obtained with the model described
herein for a variety of boundary layer regimes, such as
a dry convective layer, trade wind cumulus, cumulus
clouds over land, and stratocumulus clouds. These re-
sults demonstrate the potential of the PDF-based pa-
rameterization approach. We show that, given a family
of PDFs that is sufficiently flexible and realistic, it is
possible to construct a single scheme capable of sim-
ulating very different boundary layer regimes.
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——, P. Lacarrère, and K. Traoré, 1982: Pressure effects on triple
correlations in turbulent convective flows. Turbulent Shear
Flows 3: Selected Papers from the Third International Sympo-
sium on Turbulent Shear Flows, L. J. S. Bradbury et al., Eds.,
Springer-Verlag, 243–252.

Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus
cloud ensemble with the large-scale environment, Part I. J. At-
mos. Sci., 31, 674–701.

Bechtold, P., C. Fravalo, and J. P. Pinty, 1992: A model of marine
boundary-layer cloudiness for mesoscale applications. J. Atmos.
Sci., 49, 1723–1744.

——, J. W. M. Cuijpers, P. Mascart, and P. Trouilhet, 1995: Modeling
of trade wind cumuli with a low-order turbulence model: Toward
a unified description of Cu and Sc clouds in meteorological
models. J. Atmos. Sci., 52, 455–463.

Bougeault, P., 1981a: Modeling the trade-wind cumulus boundary
layer. Part I: Testing the ensemble cloud relations against nu-
merical data. J. Atmos. Sci., 38, 2414–2428.

——, 1981b: Modeling the trade-wind cumulus boundary layer. Part
II: A higher-order one-dimensional model. J. Atmos. Sci., 38,
2429–2439.

——, 1985: The diurnal cycle of the marine stratocumulus layer: A
higher-order model study. J. Atmos. Sci., 42, 2826–2843.
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